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ABSTRACT: This work presents the perspectives on neural network application in fatigue 

lifetime estimation for a 0.5 MW wind turbine located in Dortmund, Germany. The wind turbine 

has been in operation since 1997, and the monitoring data was collected from 2010 to 2013 and 

is still being collected since 2016. Hourly fatigue damages for the whole monitored period are 

calculated from the displacement (strain) measurements at the tower and can be used for the 

remaining lifetime estimation. However, the fatigue damage that occurred during the unmonitored 

period can have a high influence on the accuracy of the remaining lifetime forecast. Therefore, a 

neural network is employed in order to estimate the fatigue damage for the unmonitored period. 

The calculated hourly fatigue damage is paired up with the available hourly wind data from 

several wind stations located in a 52 km radius and used to establish correlations (neural network 

training) between the wind data in the area and the strain based fatigue damage. In this way, an 

attempt has been made to estimate the wind induced fatigue damage. Since the hourly wind data 

is available for the whole operating life since 1997, the neural network is employed to estimate 

the hourly fatigue damages for the unmonitored period and a novel remaining lifetime estimation 

is given. The accuracy of the neural network is tested on a part of monitoring data, which is not 

used for the training and its efficiency is tested for two types of neural networks, feedforward 

neural network for fitting (FFNN) and Self-Organizing Map (SOM). 

1 INTRODUCTION 

With growing needs for clean energy sources, efficient harvesting of the wind energy implies the 

need to improve not only efficiency, but also safety and economic aspects of the wind energy 

converter systems. Many existing wind turbines are approaching or have already reached the end 

of their designed lifetime. This is the case with a 0.5MW wind turbine located in Dortmund, 

Germany, which has been in operation since 1997. Fatigue loads are the main lifetime design 

parameter. They are by nature cyclic loads that occur due to wind effects through wind turbine 

oscillation and operation, wind turbine control (pitch angle change, breaking systems and nacelle 

orientation) and special events. It is assumed that under normal operating conditions, the majority 

of the fatigue damage is related to the wind.  

The state of the structure, the level of degradation and possible extension of the useful lifetime 

can be evaluated through application of Structural Health Monitoring (SHM) systems. Generally, 

the advances in SHM systems are leading to utilization of smart monitoring algorithms based on 

pattern recognition and machine learning, as stated in Farrar and Worden (2013). The authors 

came to the conclusion that statistical pattern recognition approach is the most appropriate when 

dealing with damage detection problems and give a summary of both supervised and unsupervised 

learning approach in statistical pattern recognition. The application of artificial intelligence (AI) 
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in SHM has already been the topic of various studies, with the main idea of discovering and 

modeling underlying correlations between the observed features. The benefits of AI application 

become more obvious as the complexity of the problem increases, i.e. with increasing number of 

features and nonlinear dependencies among them, Figueiredo et al. (2011). In Buethe et al. (2012), 

a Self-Organizing Map is shown to be a good tool to differentiate between two effects in measured 

data, damage of a piezoelectric sensor and change of environmental or operational data, which 

can normally cause changes of the same order in sensor behavior. Furthermore, it was possible to 

use SOM to distinguish 2 different sensor faults under changing temperature conditions. In 

Abdeljaber and Avci (2016), a nonparametric damage detection algorithm that integrates SOM 

and pattern-recognition feedforward neural network is presented. SOM is used to cluster data 

from accelerometers for undamaged and damaged cases. Data is clustered corresponding to 

different damage indices, which are then used as an input for neural network and damage scenario 

recognition, including damage localization.  

In this paper, two AI models, a feedforward neural network (FFNN) and a Self-Organizing Map 

(SOM) are used to estimate the wind-induced used lifetime for an operating wind turbine support 

structure. The hourly fatigue damage is first calculated for the available monitoring data (2010-

2013 and 2016-2018) and then used for AI model development and validation. The input data for 

the models is the open source wind station data in the area (hourly wind speed, wind direction 

and temperate), which is available online on Deutscher Wetterdienst (2019) server for the whole 

wind turbine operation time since 1997. In this way, correlations between the wind station data 

and wind induced fatigue damage at the wind turbine tower are established for the monitored 

period, and can later be used for the fatigue assessment in the remaining years, when no 

monitoring data is available. 

2 MONITORING SYSTEM 

The studies were conducted on an operating 0.5 MW wind turbine, Airwin, where the monitoring 

data was collected from 2010 to 2013 as a part of a DFG-funded research project and is still being 

collected since 2016. The tower of the wind turbine is a steel structure, made out of three parts, 

each 21m long, rolled and welded in a workshop together with the top and bottom flanges for the 

assembling. The three tower parts are then assembled at the site, using pre-stressed bolted 

connections on the flanges. The schematic overview of the available monitored data is shown in 

Figure 1. More information can be found in Lachmann (2014). 

3 FATIGUE DAMAGE FROM MONITORING DATA 

The welded connections between the flange and the tower subparts are considered to be hot spots, 

where the damage is most likely to occur. For this reason, 3 displacement transducers (6 in total, 

W1-W6) were set above the flanges to capture strains and possible damage. The fatigue damage 

is calculated for all 6 displacement transducers and for the AI application in this study, the so 

called worst location of all measurement positions was chosen, which corresponds to dominant 

wind direction and in this case the position of the sensor W3 (Figure 1 and Figure 2). Alternatively, 

it is also possible to superpose the measured data at the measurement locations to recalculate data 

for a virtual sensor in the worst location, as detailed in Höffer et al. (2017). 
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Figure 1. Installed SHM sensors and available operational data, Lachmann (2014) 

3.1 Data preprocessing 

Before applying the fatigue damage algorithm, it was necessary to address the influence of several 

types of sensor faults: spikes, constant values, and additionally very large amplitudes in sensor 

W3 signal, which started after 2016. First, a median filter was applied to remove the spikes from 

the data. Then, an automatic procedure for sensor fault diagnosis, proposed by Kullaa (2013), was 

applied to estimate the accuracy and reliability of the acquired data. In this procedure, a sensor 

model is derived by estimating each sensor using the remaining sensors in the network, based on 

redundancy. This is done by applying the minimum mean square error (MMSE) estimation on 

functioning sensor network (training dataset) and then the sensor fault detection and 

quantification for the investigated datasets is done by means of multiple hypothesis test and 

generalized likelihood ratio test (GLR). The tests have shown that sensor W3 suffers from sensor 

faults in a wide range of data starting from 2016 and cannot be used without previous intervention. 

Therefore, all data for sensor W3 starting from 2016 was replaced with data modeled from other 

sensors. It has been shown that in the case that there is no or there a minor sensor fault, the 

modelled data corresponds to the measured data on a satisfactory level and allows the further 

usage of the modelled W3 data. The applied algorithm was also capable to correct the constant 

values, which were detected in a small share of the measurement data, measured by sensor W2. 

After the data cleansing, strain time histories were calculated from displacement measurements 

by estimating the relative elongation/shortening from the initial 500mm sensor rod length. Then, 

the strain time histories are used for stress calculation using the Hook’s law, which assumes the 

linear connection between strain and stress over Young’s modulus of elasticity (here 210 GPa). 

3.2 Fatigue calculation - rain flow counting and S-N curve  

According to the wind turbine standard DNVGL-ST-0126 (2016), fatigue damage is defined as 

degradation of the material caused by cyclic loading. The Palmgren-Miner rule can be used for 

the calculation of the cumulative damage, D𝑐, by assuming a linear damage accumulation over 

time as shown in the equation (1): 

D𝑐 = ∑
n𝑐,𝑖(∆𝜎)

N𝑐,𝑖(∆𝜎)

I

𝑖=1

 (1) 
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where, n𝑐,𝑖(∆𝜎)  is the number of cycles for a stress range ∆𝜎, estimated from stress time histories 

using the rain-flow counting algorithm, and N𝑐,𝑖(∆𝜎) is number of cycles until failure for stress 

range ∆𝜎 , which is interpreted from the characteristic S-N curve. 

In this work, the cumulative fatigue damage is calculated for every hour of the existing data (2010-

2013 and 2016-2018) using the Palmgren-Miner rule. The C1 S-N curve (Figure 2) for double 

sided butt weld was chosen for the hot spot above the welded flange-tower connection according 

to wind turbine standards DNVGL-ST-0126 (2016) and DNVGL-RP-C203 (2016). The resulting 

cumulative fatigue damage for the whole monitored period is then calculated from the hourly 

fatigue damages and shown in Figure 3. As seen in the figure, sensor position W3 proves to be the 

worst location with highest cumulative damage over the monitored years. 

 

Figure 2. C1 S-N curve, DNVGL-RP-C203 (2016) 

 

 

Figure 3. Cumulative fatigue damage for the existing data 

4 WIND STATIONS DATA 

Since the fatigue damage for periods when no monitoring data is available influences the accuracy 

of the consumed lifetime estimation and therefore the useful lifetime forecast, within this paper 

an attempt has been made to estimate the hourly fatigue damage for the whole operation period 

by utilizing the wind climate data in the area. For this purpose, the information on hourly wind 

velocity, direction and air temperature were taken from Deutscher Wetterdienst (2019). The 

database is open source and offers the climate information for the public use. For this study, the 

wind stations that are located in approx. 52km radius and offer the hourly information on wind 

data since 1997 were chosen. The overview and location of the wind stations in regard to the 

Airwin wind turbine in Dortmund is shown in Figure 4, together with the available data used in 

this study. 
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Since the distance from the available wind stations and the wind turbine is relatively large, the 

correlations between the data were investigated. In Figure 5, an example of hourly wind speed 

and wind direction during the first third of January 2010 is given. The same figure shows the 

correlation coefficients c, which are calculated between the wind data at the Airwin wind turbine 

and each of the wind stations for the whole monitored period. As it can be seen, the data for all 

measurement locations follows a similar trend. The correlation coefficients (min. 0.62 between 

wind direction at Düsseldorf wind station and wind direction at Airwin, max. 0.81 between wind 

speed at Düsseldorf wind station and wind speed at Airwin) show that it might be possible to 

establish a model for the wind-induced fatigue damage estimation from the wind stations data. 

 

Figure 4. Overview of the available wind station data (1997-2018) 

 

Figure 5. An example of the correlations between the wind data at Airwin and each of the wind stations 

5 WIND INDUCED FATIGUE ESTIMATION BY ARTIFICIAL INTELLIGENCE 

Artificial neural networks have found a wide use in various science and engineering fields. They 

are designed to recognize patterns in the data and can therefore be used for pattern recognition 

problems, such as image and sound recognition, but also time-series modelling, system 

identification and data clustering. Neural networks are known for their ability to discover and 

model highly nonlinear dependencies in the data, which can be difficult to grasp when dealing 

with problems that have more than 3 dimensions. 
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In this study, two different types of neural networks were used to create models, which are capable 

to determine wind induced fatigue damage at the wind turbine tower for time periods when no 

monitoring data is available. Both models use the data from the wind stations mentioned in the 

previous chapter. The main difference amongst the models is that the fitting feed-forward neural 

network belongs to the group of supervised learning, which means that monitored fatigue data is 

used for model creation, while the SOM belongs to unsupervised learning, where training the 

model is independent of monitoring data and based on wind station data only, while fatigue data 

is only used as label after training process is finished. 

5.1 Multilayer feed-forward neural network for fitting problems (FFNN) 

Feed-forward neural networks are the oldest types of neural network and consist of layers that are 

made of neurons and connected through weight functions, Hertz et al. (1991). The basic scheme 

is given in Figure 6, left. A fitting neural network is mapping the input data onto the output data, 

establishing the underlying correlations and finding the appropriate fitting. The information flows 

only in one direction, from input layer to the output layer and learning is done through weight 

modification to reduce the difference between calculated and predetermined output. Since the 

output data is known for the training phase, this algorithm belongs to the supervised learning. 

5.2 Self-Organizing Maps (SOM) 

Self-Organizing Maps (also known as Kohonen network) display high-dimensional data on a low-

dimensional 2D map and are often used for the clustering of the data. They were first introduced 

by Teuvo Kohonen. In Kohonen (2001), the main concepts and applications of SOMs are 

presented. Applications in SHM can be found e.g. in Torres-Arredondo et al. (2013), Buethe et 

al. (2012)and Tibaduiza et al. (2013). The main difference between standard neural networks and 

SOM is the meaning of the weights. Here, the weight denotes the relation between the input data 

vector and the map unit, located in n-dimensional space, where n is the number of observed 

features. The map itself is the two-dimensional display as output space. The learning mechanism 

is not based on predefined output, but on the data itself and training is done through “moving” of 

the units and adjustment of the distances so that the certain units are close to certain input data 

samples. In this way, a map is created to fit the input data and can be seen as 2-dimensional 

topology of the data. SOMs belong to unsupervised learning, since there are no output labels on 

which the data is trained and the labels are assigned only after the training process. Figure 6, right, 

shows the basic scheme of a SOM. 

 

Figure 6. Basic scheme of a FFNN (left), Hertz et al. (1991) and a SOM (right), Epina & SDL (2012) 

5.3 Model training and validation 

Model training and validation were conducted with Deep Learning Toolbox in MATLAB by 

pairing up the available monitoring and wind station data. The wind station data available during 

the monitored time period (2010-2013, 2016-2018) is used as an input for FFNN and SOM. In 
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this way, the input layer consists of 11 neurons (features), corresponding to wind speed, wind 

direction and temperature from the four wind stations in the area (temperature was not available 

for the wind station Haltern). In total, 45200 hours were available and half of the data distributed 

over the whole time period (every second hour) is used for model training and the other half (the 

hours in-between) is used for model validation. This was considered to be the best choice for the 

model training having in mind the gaps in data collection with various durations, as it can be seen 

in Figure 3. This way, the model will be able to estimate these gaps best. Data is first standardized 

to have zero mean and unit variance for the wind speed and temperature, and normalized to the 

main wind direction for wind direction data.  

For the FFNN training, the output data is required and here it consists of 1 neuron - fatigue damage 

(D𝑐), calculated from the sensor W3 for the corresponding hour used in input. As previously 

mentioned, in case of the FFNN, the learning is done through weight modification to reduce the 

difference between calculated and predetermined output for all 22600 hours used in the training 

phase. The appropriate number of hidden layers and neurons needs to be chosen for the successful 

network training and here, 2 hidden layers were chosen, with 7 and 3 neurons, respectively. 

For the SOM training, only the wind station data is needed. The same input training dataset was 

used as in case of the FFNN. The initial dimension of the map is 29x31 units according to the 

ratio of the first and second principle component of the input data. The training is done through 

“moving” of the units and adjustment of the distances so that the certain units are close to the 

certain input data samples, following their similarities. After the training phase is finished and a 

map of the data is prepared, the fatigue data for each hourly training data is assigned as labels to 

the corresponding unit of the hourly wind data, and the mean fatigue damage of all data that 

belongs to the same unit is used a label.  

The validation for both models is done based on the other half of the monitoring data, which is 

not used for the training. First, the wind station data is used as an input and the fatigue damage is 

estimated through FFNN and SOM. Then, the results are compared against the fatigue data 

calculated from the sensor W3, which is considered to be the target (“true”) value. Figure 7 shows 

the obtained results. On the left side the hourly fatigue damage is represented in cumulative form 

and on the right side an example of 200 hours is shown. As it can be seen, the cumulative 

estimated values are relatively close to the target values, especially for SOM, but in the closer 

look at the specific hours, larger differences can be observed. These differences are probably 

caused by influences other than wind-induced actions like influence of pitch, breaking or 

inspection. The models over- and underestimate the calculated fatigue damage. However, since 

the cumulative damage is of the main interest for the consumed lifetime estimation, the validation 

is considered as satisfactory. 

 

Figure 7. Validation – cumulative damage for the complete testing data (left) and 200h example (right) 
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6 RESULTS AND DISCUSSION 

After the model training and validation, FFNN and SOM models were used to estimate the wind 

induced fatigue damage for the wind turbine operation between 1997 and 2018. The total number 

of the available hours sums up to 20.62 years. The obtained results are shown in Figure 8. It is 

important to note that the calculated damage is not the actual total fatigue damage, but an 

estimation for the wind induced component for this specific wind turbine. The remaining 

components due to the wind turbine control (pitch angle change, breaking systems and nacelle 

orientation) and special events, such as impact, fire and others were not considered in this study, 

since no full information was available between 1997 and 2018. Therefore, the model cannot be 

applied for the actual damage assessment, but only for the wind related damage estimation. 

However, it can be seen in the model testing phase that the majority of the fatigue damage is based 

on wind-dependent factors. By using data of the last years for training the models, it is assumed 

that the impact of wind is constant over time, which is a conservative assumption as it is known 

that aging leads to increased impact with increased age of the turbine. 

 

Figure 8. Cumulative wind-induced fatigue damage over 22 years of wind turbine operation 

The estimated damage for the 20.62 years of operation is 0.0458 and 0.0469 for SOM and FFNN 

models, respectively. This gives mean yearly damage of 0.0022 and 0.0023. In a previous study 

for the same structure, Höffer et al. (2017), the calculated yearly damages are between 0.0022 and 

0.0036 and the highest calculated yearly damage of 0.0036 is used for the lifetime estimation of 

277.78 years. However, due to the lack of structural details at the time, the S-N curve given in 

EN 1993-1-9 (2005) is used for that study. The selected curve allows stress range of 40MPa at 2 

million cycles, in comparison to the C1 curve used in this study, where 65.5 MPa for 10 million 

cycles is allowed. The S-N curve, selected in the present study, additionally considers the stress 

concentration factor and is more specific to wind turbine design. 

7 CONCLUSIONS 

In this paper, an estimation of wind-induced fatigue for an operating wind turbine support 

structure based on the artificial intelligence (AI) application is given. The wind turbine has been 

in operation since 1997 and therefore has reached the end of the design lifetime. Since the 

monitoring data is available between 2010 and 2013 and after 2016, the existing data is used for 

fatigue damage estimation. Afterwards, the open source data from four wind stations in the area 

is paired up with the calculated fatigue damage and two AI models are developed, feedforward 

neural network for fitting problems (FFNN) and Self-Organizing Map (SOM). The results show 

that both models are capable to estimate the wind-induced fatigue damage using the wind station 

data only, after being trained with monitoring data of the defined 0.5MW turbine from 2010 till 

2018, and therefore allow estimation for missing data within this period. Estimations for the not-
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monitored times before 2010 and between 2013 and 2016 also show a good agreement of both 

AI-models.  
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