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ABSTRACT: In this paper, a wireless sensor network for strain cycle monitoring on railway 
bridges is presented. The network implements tools such as optimized strain sensing hardware, 
embedded data processing, and event driven monitoring with sentinel nodes to achieve high 
quality data and long operation periods. A test deployment on a railway bridge demonstrated 
that the monitoring system performed very reliably and the quality of the recorded data met the 
requirements of fatigue life assessment. Although strain cycle monitoring is data intensive and 
expensive in terms of power consumption, the combined use of optimized strain sensing 
hardware, embedded data processing and event driven monitoring allows to achieve an 
operation life-time of several months. 

1 INTRODUCTION 

The European railway network has many metallic bridges that are approaching or have even 
exceeded their nominal life-time (Sustainable Bridges 2004). Their safe operation beyond this 
life-time very often depends on the remaining fatigue life of cross beams and secondary 
longitudinal girders that transfer the axle forces from the sleepers to the main girders. These 
structural components are exposed to much more high amplitude stress cycles than the main 
girders. Several investigations demonstrated that monitoring strain data during operation 
allowed to improve the quality of fatigue life assessments of these critical structural components 
(Leander, Andersson et al. 2010, Bruehwiler 2015).  

Typically, the monitoring program consists in acquiring strain data. Since fatigue assessment is 
performed by considering strain cycles induced by traffic loads, the absolute strain usually does 
not need to be recorded. Therefore, strain recording is only required when a train is crossing a 
bridge. Since such distinct events last for a short period of time, an event driven monitoring 
policy avoids the recording of useless data. Finally, since train traffic is highly regulated, a 
monitoring period of at most several months is usually sufficient to create reliable data basis for 
fatigue life assessment.  

Among different concepts and technologies for civil structures monitoring, wireless sensor 
networks (WSNs) have the attractive properties of being highly automatable and cable-free, thus 
enabling rapid and cost-saving deployments. Reduced installation costs favor mainly short and 
medium term deployments which, in practice, represent the majority of monitoring applications. 
However, battery-operated WSNs are only competitive if they can provide good quality data 
and can be operated reliably and with minimal maintenance for the planned monitoring period. 



  

 

  

Strain measurements on civil structures are usually performed with electrical resistance strain 
gages. While their use with tethered monitoring devices is well established, operating resistance 
strain gages with battery powered WSNs have an important drawback since the power 
consumption of resistance strain gages is very high. Furthermore, strain cycle monitoring 
requires a sampling rate of at least 100 Hz. WSNs are usually not designed to handle such data 
rates since their communication bandwidth is small and communication is very expensive in 
terms of power consumption. The consequences are frequent communication channel 
congestion with high data loss and short battery life-time.  

This paper describes how tools such as optimized strain sensing hardware, embedded data 
processing, and event driven monitoring with sentinel nodes enable to overcome these severe 
drawbacks.  

2 TOOLS 

2.1 Strain sensing hardware 

Widely deployed 120 Ohm resistance strain gages with a Wheatstone bridge as signal 
conditioning unit consume approximately 60 mW. This figure is comparable to the power 
consumption of the radio unit in transmission mode which is the most power consuming 
hardware component of a wireless sensor node. Therefore, operating resistance strain gages 
permanently implies a dramatic reduction of the operation life-time of a sensor node and 
frequent battery replacements.  

Power consumption of strain sensing can be reduced by either increasing the resistance or 
reducing the input voltage of the signal conditioning circuit (Wheatstone bridge). Increasing the 
resistance, however, reduces the signal to noise ratio and reducing the input voltage decreases 
the sensitivity of the signal conditioning circuit. Therefore, both power saving methods 
potentially reduce the quality of data. 

a)          b)  
Figure 1: a) Functional block diagram of strain sensing hardware. b) Strain sensing hardware.  

Both methods were implemented and tested by adding resistors in series with the Wheatstone 
bridge (R5 and R6 in Figure 1a) or by using 700 Ω (R1) instead of the common 120 Ω strain 
gages (Feltrin, Popovic et al. 2016). The strain sensing hardware (Figure 2) is endowed with a 
low noise A/D converter with 24 bit resolution that enables to digitalize the signal with a high 
resolution while keeping a good amplitude range. With the highest amplifier gain, the amplitude 
range is approximately ±16’900 µm/m and the resolution is smaller than 0.5 µm/m. These 
values comply well with the requirements of strain measurements for fatigue assessment of 



  

 

  

railway bridges which do not exceed a cycle amplitude range of 1’000 µm/m (200 MPa) and a 
resolution of 2–3 µm/m (0.5 MPa). The 24 bit A/D converter is slower than conventional 8 or 
12 bit A/D converters since its sampling rate is limited to 470 Hz. For the addressed application, 
however, such a sampling rate is very unlikely to be a limitation. 

Laboratory tests demonstrated that by adding two resistors of 300 Ω each, the signal noise, as 
expected, increases. With a 120 Ω strain gages the root mean square of signal noise doubles 
from 0.6 μm/m to 1.4 μm/m rms. Circuits with 700 Ω strain gages are less sensitive and achieve 
a signal noise of approximately 1 𝜇𝜇m/m rms.  

The power consumption of a sensor node with a conventional signal conditioning circuit and 
with a 120 Ω strain gauge was about 60 mW. By adding two resistors of 300 Ω each, the power 
consumption could be reduced to 20 mW. Replacing a 120 Ω strain gauge with a 700 Ω strain 
gauge produced an additional drop of the overall power consumption to 12 mW which is 20% of 
the standard hardware power consumption. Although this figure is still 5 time greater than the 
power consumption of a sensor node that is equipped with a MEMS acceleration sensor, it 
represents a significant operation life-time extension of a sensor node and enables permanent 
strain recording with monitoring periods of three weeks (Feltrin, Popovic et al. 2016).  

2.2 Embedded data processing 

Embedded data processing is a powerful tool for extending the life-time of sensors nodes. 
Power saving is achieved by reducing significantly the data communication of data intensive 
monitoring applications. In addition, low level data communication avoids congestions of 
communication channels with the benefit to diminish data loss. The feasibility and advantages 
of embedded data processing was successfully demonstrated in long term vibration monitoring 
deployments (Feltrin, Meyer et al. 2010, Feltrin, Jalsan et al. 2013).  

Fatigue life monitoring by permanent strain data recording and with an embedded rainflow 
counting algorithm was successfully implemented and tested (O'Connor, Kim et al. 2010). In 
this work, embedded data processing is used to compute a sequence of local minima and 
maxima that represent the strain cycles exceeding a given threshold (Feltrin, Popovic et al. 
2016). The algorithm works like a filter that eliminates all strain cycles that are smaller in 
amplitude than the specified threshold. Small amplitude cycles are very often irrelevant since in 
fatigue assessment methods the impact of small amplitude cycles is usually negligible. 
Furthermore, such a threshold eliminates also all cycles which are generated by signal noise as 
well.  

The output of the cycle filtering algorithm can be directly used by a cycle counting algorithm 
(e.g. rainflow counting algorithm) to determine stress spectra. The rainflow algorithm is run on 
the data server. This choice keeps the embedded data processing on the sensor node simple, 
straightforward and more reliable. Furthermore, collecting minima and maxima of a strain 
history enables a better verification of the performance of the monitoring system in terms of 
data quality and reliability rather than stress spectra. Finally, the information provided by 
minima and maxima of a strain cycles time history can be used for calibrating structural models. 

The functioning of the cycle filtering algorithm is illustrated in Figure 2 on a typical strain time 
history induced by a train on a cross beam. The original record was sampled with a sample rate 
of 123 Hz and consists of 1476 data points. The extremal points identified by the algorithm are 
plotted with markers. The cycle filtering threshold was 5 μm/m. The output of the cycle filtering 
algorithm consists of 34 samples. This corresponds to 2.3% of the original data size. Although 
significantly smaller in size, the strain cycles maps the original record with high fidelity. Such a 



  

 

  

dramatic data reduction is typical for fatigue monitoring applications on railway bridges. By 
keeping only the extremal points the time information is lost. However, since for fatigue 
assessment only the amplitude and frequency of strain cycles are of concern, the loss of time 
information is negligible. 

 
Figure 2: a) Raw data with local minima and maxima. b)  Output of cycle filtering algorithm.  

2.3 Event driven monitoring 

Earlier implementations of event driven monitoring with a WSN for railway bridge monitoring 
are described in (Bischoff, Meyer et al. 2009, Feltrin, Popovic et al. 2016). In both 
investigations, the event identification was performed by each sensor node individually. An 
alternative concept is to remove the triggering mechanism from strain sensing nodes and 
supplementing the network with additional sensor nodes that are specialized in detecting and 
communicating an event to the strain sensing nodes (Popovic, Feltrin et al. 2016). The network 
is therefore composed by sentinel nodes, which are specialized in event detection, and 
monitoring nodes, which are specialized in strain sensing. Once detecting an event, a sentinel 
node notifies the monitoring nodes regarding the upcoming event by broadcasting alarm 
messages throughout the network. The monitoring nodes are operated in a power saving standby 
mode that is periodically interrupted by short wake ups to listen for possible alarm messages. 
Only upon receiving such an alarm message, the monitoring nodes will turn on their strain 
sensing hardware and start recording the event. After completion of recording, the monitoring 
nodes switch-off the strain sensing hardware, process and transmit the data, and go back to the 
standby mode. 

This event driven monitoring concept requires that the event detection is reliable and the 
alarming is reliable and fast. In case that the sentinel node misses to detect an approaching train, 
all monitoring nodes will completely miss the event. If some of the monitoring nodes do not 
receive the alarming message, they will fail to capture the event. In case of a late reception of 
alarming messages, monitoring nodes would turn on the strain sensing hardware only when the 
train has partly of fully passed the measurement locations. All these cases cause data loss that 
bias the fatigue assessment process. Furthermore, although sentinel nodes have to operate 
permanently, their operation life-time has to be comparable to those of monitoring nodes.  

Spreading alarming messages through a multi-hop network in a timely manner is a challenge. 
Since the radio device is the dominant power consumer of a sensor node it is usually operated 
with duty-cycling which tends to prolong message delivery. Furthermore, during the alarming, a 
train is between the sentinel node and the monitoring nodes. Passing trains have found to have a 
significant impact on the communication link quality between network nodes and can affect the 
reliability of message delivery (Feltrin, Popovic et al. 2016).  



  

 

  

The alarming message protocol, which was used in this work, is sketched in Figure 3. The 
sentinel node creates a primary alarm message that is broadcasted to the nodes within the radio 
range of the sentinel node. All nodes that received the message check whether it is a new event. 
In this case the nodes rebroadcast the message (secondary alarm message) to their neighbouring 
nodes. For the purpose of increased reliability in delivering alarm messages, each node will 
rebroadcast message several times. The higher the number of retransmission the higher is the 
reliability that the alarming message is received by each monitoring node in time. However, a 
high retransmission number implies also a high power consumption since radio communication 
is very expensive. 

 
Figure 3: Alarming message protocol.  

3 FIELD TESTS 

The field test has been performed on a steel railway bridge that was constructed in 1946 (Figure 
4a). It has a span width of 36 m and is made of two lateral longitudinal trusses which are 
connected with 7 cross-beams. The bridge carries one rail that is used for trains travelling in 
both directions. The route is mainly used by suburban trains whose speed did not exceed 80 
km/h. 

a)    b)  
Figure 4: a) Railway bridge. b) Acceleration sensor of the sentinel node mounted on the rail.  

3.1 WSN platform 

The wireless sensor network was based on the commercial sensor node of the company 
Decentlab GmbH (Decentlab GmbH. 2014). The core of the sensor node is the commercial 
ultra-low power microcontroller TI MSP430 of Texas Instrument with 256 KB of flash 



  

 

  

memory, 8 KB of RAM memory and 16 MHz CPU speed. Wireless delivery of data is 
performed by a low-power radio transceiver operating in European SRD Band from 863 to 
870 MHz. The nominal transmission rate is 20 kbit/s. The standby mode power consumption is 
0.6 μW, while during reception and transmission the consumption reaches 27.6 mW and 
51 mW, respectively. The WSN nodes were operated with TinyOS2.x. 

3.2 Monitoring set-up 

The monitoring network consisted of 12 nodes: 2 sentinel nodes, 3 relay nodes and 6 monitoring 
nodes and a base station (Figure 5). Sentinel nodes are placed at a distance of about 50 m and 85 
m from the bridge. The accelerometer for train detection was mounted on the rail with magnetic 
footings (Figure 4b). In this study, the commercial accelerometer Colibrys MS7002 was used. It 
has an amplitude range of ±2g and a resolution of approximately 1 mg. This low power MEMS 
capacitive sensor has a power consumption of less than 0.6 mW. 

 
Figure 5: Monitoring set-up. 

Six cross beams on the bridge were monitored with commercial strain checkers equipped with 
120 Ohm strain gauges (Tokyo Sokki Kenkyujo Co. Ltd. 2005). Similarly to sensor nodes that 
were equipped with magnetic footings and allowed a deployment within a couple of minutes, 
strain gauges were hitched to the bridge using magnets (Figure 5b). They were placed in the 
middle of the cross-beam where the highest strain was expected.  

Due to the lack of line of sight and the electromagnetically highly reflexive metallic structure of 
the bridge, the communication between sentinel nodes and monitoring nodes was unreliable. 
Therefore, three relay nodes were placed in order to create a reliable link between the 
monitoring nodes, sentinel nodes and the base station. All nodes were powered with two type-D 
batteries that provided 1.8Ah at 3 V.  

The base station collected all the data of the local monitoring network and forwarded the data to 
a remote server via GSM. It had an average power consumption of 250 mW and was therefore 
powered with a car battery with a capacity of 78Ah at 12 V.  

3.3 Operation mode 

The sentinel nodes recorded rail vibrations permanently with a sampling rate of 123 Hz. The 
acquisition period for a single buffer was 0.2 seconds. The acquired data was continuously 
analysed by embedded data processing and compared against a threshold of 7 mg. Threshold 
exceedance in two consecutive buffers generated an alarm message. The alarming message was 
transmitted 3 times by each node.  

After receiving the alarm message and switching on the strain sensing hardware a monitoring 
node waited 0.6 seconds before starting data collection. This delay was implemented to avoid 



  

 

  

the initial signal bias due to heating of strain gauges and charging of capacitors in filter circuits. 
Strain was then recorded with a sampling rate of 123 Hz for 9 seconds. Data were organized in 
alternating data buffers with a size of 384 samples which correspond to roughly 3 seconds of 
measurements. While one buffer was filled with new data, the buffer with previously recorded 
data was forwarded to the embedded data processing pipeline. The cycle filter threshold was set 
to a strain amplitude of 5 μm/m which is much greater than the noise level and corresponds to a 
stress of 1 MPa. The result was then forwarded to the radio for transmission to the base station. 
In addition, all nodes reported periodically battery voltage, information about alarming such as 
time of arrival and number of hops and data regarding link quality and routing of data packets. 

3.4 Results 

3.4.1 Strain data 

An unprocessed record acquired on a cross beam with a sensor node is shown in Figure 6a). The 
strain cycles induced by the 4 train axles are clearly distinguishable. The record demonstrates 
that the signal quality is good. In fact, the noise is approximately 1 µm/m rms. A typical 
example of processed data provided by the monitoring system is displayed in Figure 6b). In the 
cycles pattern the 4 train axles are clearly distinguishable. With a filter threshold of 5 μm/m 
(corresponds to 1 MPa) the average data size sent over the radio was 9% of the original raw data 
size. By increasing the filter threshold, the many small amplitude cycles in front and rear of the 
main cycles, which are due to vibrations, could be removed with the beneficial effect to further 
reduce the data size sent over the radio. 

 
Figure 6: a) Raw data record. b) Output of cycle filtering algorithm.  

3.4.2 Alarming speed 

The histogram of alarm delivery period is depicted in Figure 7a. The alarm delivery period is 
the period between alarm dispatch by a sentinel node and alarm reception by a monitoring node. 
The median (50% quantile) alarm delivery period was 0.13 s and the 99.9% quantile was 0.45 s. 
By considering the time delay of 0.6 s for starting data acquisition after receiving the alarm 
message a monitoring node is ready after approximately 1.1 second. At a speed of 80 km/h, the 
train needed approximately 2 seconds to reach the bridge if we assume that the alarm message 
was sent when the front of the train reached the location of the sentinel node. Therefore, 
message delivery was always in time.  

Figure 7b) shows the histogram of the hop distance, e.g. number of hops alarm messages did 
until delivery. A distance of one hop means that a monitoring node received the primary 
alarming message of the sentinel node. A hop distance of 2 and more means that monitoring 



  

 

  

nodes received secondary alarm messages. Primary messages have a share of 22%. This modest 
share is due to fact that there is no line of sight between sentinel and monitoring nodes. Relay 
nodes, which had a line of sight to both sentinel nodes, had a share of primary messages of 50%. 
The median (50% quantile) of the hop distance of monitoring nodes was 3. Nevertheless, alarm 
delivery was still sufficiently fast.  

 
Figure 7: a) Histogram of occurrence rate of delivery period of alarming messages. b) Histogram of 
occurrence rate of number of hops of alarming messages until delivery. 

3.4.3 Event hit rate 

The number of events occurring during the monitoring period was 3728. Data of 12 of these 
events (0.3%) have been completely lost. Since the event identification numbers originated by 
the sentinel nodes have gaps, authors presume that the sentinel nodes and the network were 
working correctly but the data was lost either by the base station or the server.  

Figure 8 shows the histogram of the number of monitoring nodes receiving an alarm message at 
the events. It demonstrates that in 3678 events (98.7%) all monitoring nodes received an alarm 
message. The total number of incomplete events, these are events that there is no data of at least 
one monitoring node, is 39 (1.1%).This results indicates that the success rate of the alarming 
message protocol was better than 99.3%.  

 
Figure 8: Histogram of the number of monitoring nodes receiving an alarm message. 

3.4.4 Power consumption 

Figure 9 shows the time history of battery voltage of sentinel and monitoring nodes. Power 
consumption induces a decrease of battery voltage with time. As expected, due to the permanent 
data acquisition, the sentinel node had the highest power consumption. However, the power 



  

 

  

consumption of the monitoring nodes is not significantly different. Their voltage drop in 45 
days is 0.3 V. Since sensor nodes operate correctly for a battery voltage greater than 1.9 V, the 
expected life-time of the monitoring nodes is 100 days and 90 days that of the sentinel nodes. 
Relay nodes performed very similar to monitoring nodes.  

Figure 9 shows also the time history of battery voltage of the software triggered event detection 
method described in (Feltrin, Popovic et al. 2016). In this method, the strain sensing hardware 
described in section 2.1 is operated permanently and event detection is performed based on 
strain data by embedded data processing. Its operation life-time is approximately 3 weeks. 
Event driven monitoring with sentinel nodes enables a life-time extension by a factor 5.  

 
Figure 9: Time evolution of battery voltage of monitoring and sentinel nodes. 

4 CONCLUSIONS 

This paper presents a wireless monitoring system for strain cycles monitoring on railway 
bridges. It implements tools such as low power strain sensing hardware, embedded data 
processing, and event driven monitoring with sentinel nodes. The event driven monitoring 
system was tested with a field deployment that lasted for 47 days. The test demonstrated that 
train detection as well as alarming performed very reliably. In only 1.3% of the 3728 detected 
events not all monitoring nodes received the alarm message. Only 0.3% of the events were 
missed by all monitoring nodes. This is a small failure rate for this very first field test. Alarm 
message delivery turned out to be sufficiently fast so that data loss due to late arrival of alarm 
messages did not occur. The expected life-time of monitoring nodes for the specific deployment 
is 100 days. For many railway bridges such a monitoring period would already provide a very 
good data base for a reliable fatigue life assessment.  

Nevertheless, there is still space for improvements. The operation life-time of the monitoring 
nodes can be extended by using 700 Ω in place of 120 Ω strain gages. In addition, the output of 
data processing can be reduced by selecting a filter threshold that cancels the many small 
amplitude cycles due to post-event vibrations. On steel bridges, defining a strain cycle 
amplitude threshold that is smaller than the cut-off limit of the S-N curve of the design details, 
does not have any effect on the results of fatigue assessment.   

The average loss of strain data during the field test was 4.7%. In contrast, the average data loss 
of battery voltage and network performance data was much smaller, namely 0.5%. The reason 
for this difference is that the communication of strain data occurred in bursts because of the 
event driven monitoring policy. Such a burst may temporarily exceed the data throughput 
capacity of network nodes. Since the network communication protocol used in the test does not 
guarantee a 100% safe data packets delivery, a small part of data packets went lost. The 



  

 

  

observed data loss rate due to transmission bursts is not dramatic but still problematic and needs 
to be reduced.  

Although there is still space for improvements, this investigation demonstrates that a suitably 
designed wireless sensor network is well suited for performing efficiently and reliably strain 
cycles monitoring on metallic railway bridges.  

ACKNOWLEDGMENT 

This investigation was part of the research projects PSRP-124/2010 titled Innovative Structural 
Health Monitoring in Civil Engineering Infrastructure Sustainability, Tulcoempa, funded by the 
Polish Swiss Research Programme 2009-2017, and the project Hydronet 2, funded by 
Swisselectric Research and the Swiss Competence Center Energy and Mobility. The authors 
express their gratitude to the funding agencies and to the Swiss Federal Railways for their 
support during the field tests on the Töss Bridge. 

REFERENCES 
Bischoff, R., Meyer, J., Enochsson, O., Feltrin, G. and Elfgren, L. 2009. Event-based strain monitoring on 

a railway bridge with a wireless sensor network. 4th International Conference on Structural Health 
Monitoring on Intelligent Infrastructure (SHMII-4) Zurich, Switzerland. 

Bruehwiler, E. 2015. Extending the fatigue life of riveted bridges using data from long term monitoring. 
Advanced Steel Construction, 11(3): 283-293. 

Decentlab GmbH. 2014. Single Channel Sensor Node. URL: http://www.decentlab.com/products/1-
channel-node-hd. 

Feltrin, G., Jalsan, K. E. and Flouri, K. 2013. Vibration monitoring of a footbridge with a wireless sensor 
network. Journal of Vibration and Control, 19(15): 2285-2300. 

Feltrin, G., Meyer, J., Bischoff, R. and Motavalli, M. 2010. Long-term monitoring of cable stays with a 
wireless sensor network. Structure And Infrastructure Engineering, 6(5): 535-548. 

Feltrin, G., Popovic, N., Flouri, K. and Pietrzak, P. 2016. A Wireless Sensor Network with Enhanced 
Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway 
Bridges. Journal of Sensors, DOI: 10.1155/2016/4359415 

Leander, J., Andersson, A. and Karoumi, R. 2010. Monitoring and enhanced fatigue evaluation of a steel 
railway bridge. Engineering Structures, 32(3): 854-863. 

O'Connor, S., Kim, J., Lynch, J. P., Law, K. H. and Salvino, L. 2010. Fatigue life monitoring of metallic 
structures by decentralized rainflow counting embedded in a wireless sensor network. Proceedings of 
the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Vol 2, 
Vancouver, British Columbia, Canada. 

Popovic, N., Feltrin, G., Jalsan, K.-E. and Wojtera, M. 2016. Event-driven strain cycle monitoring of 
railway bridges using a wireless sensor network with sentinel nodes. Structural Control and Health 
Monitoring, DOI: 10.1002/stc.1934 

Sustainable Bridges. 2004. European railway bridge demography. URL: 
http://www.sustainablebridges.net/main.php/D1.2-WP1-02-T-040531-
F_Public.pdf?fileitem=22708836. 

Tokyo Sokki Kenkyujo Co. Ltd. 2005. FGMH-1, Strain checker. URL: 
http://www.tml.jp/e/product/strain_gauge/option/fgmh-1.html. 

 

http://www.decentlab.com/products/1-channel-node-hd
http://www.decentlab.com/products/1-channel-node-hd
http://www.tml.jp/e/product/strain_gauge/option/fgmh-1.html

	1 Introduction
	2 TOOLS
	2.1 Strain sensing hardware
	2.2 Embedded data processing
	2.3 Event driven monitoring

	3 Field Tests
	3.1 WSN platform
	3.2 Monitoring set-up
	3.3 Operation mode
	3.4 Results
	3.4.1 Strain data
	3.4.2 Alarming speed
	3.4.3 Event hit rate
	3.4.4 Power consumption


	4 Conclusions
	acknowledgment
	References

