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ABSTRACT: An extensive number of already built buildings are deteriorating due to 

environmental effects, varying service loads, and aging. Hence, it is extremely crucial to 

accurately and continuously track the deterioration condition of these structures by employing 

some structural health monitoring (SHM) based assessment procedures. In this regard, vibration-

based methods are amongst the most effective ones as they can be used in ambient vibration and 

operational loading conditions. Each building has unique vibration characteristics that will change 

due to accumulated deterioration and damage. However, the changes due to deterioration are 

generally subtler than changes due to damage, and consequently more difficult to detect. 

Therefore, deterioration detection procedures need to be more accurate and sensitive to these 

changes. This paper presents an autoregressive (AR) time-series residual-based deterioration 

assessment method which uses SHM data to capture changes in dynamic characteristics of 

building structures. A novel AR model order estimation procedure was proposed in order to 

enhance the sensitivity of the method. The result shows that the proposed methodology can clearly 

detect deterioration. 

 

1 INTRODUCTION 

All infrastructures deteriorate at a slow-pace and progressive process due to the variety of 

challenges in their lifespan such as aging, environmental effects, and varying service loads. Due 

to the changing characteristics of buildings, SHM data is crucial to evaluate deterioration 

condition, to maintain their safety, to increase their life expectancy, and to reduce their costs of 

maintenance and repairs. Many existing building structures are in great need of repair and 

maintenance, but detecting deterioration condition prior to damage is not easy. 

Due to accumulated deterioration and damage in a structure, its unique vibration characteristics 

change. Some researchers defined deterioration as a continuous loss of cross-sectional area in 

time (Okasha and Frangopol, 2010). It is worth to note that the changes owing to damage are 

generally far higher than changes due to deterioration. Du et al. (2013) concluded that undamaged 

surface of concrete on a structure does not confirm the healthy condition of the structure. As a 

result, deterioration is much more difficult to detect, and needs more accurate and sensitive 

methods. Farrar et al. (1999) asserted that dynamic properties of a structure alter due to changes 

in the structure’s mass, stiffness or energy dissipative characteristics. 



  

 

  

One of the key roles of using SHM data is to identify damage in structures. In fact, most studies 

so far in SHM area are on damage detection, not deterioration identification. Doebling et al. 

(1998), Carden and Fanning (2004), and Chan and Thambiratnam (2011) reviewed damage 

identification methods employing SHM data. The past literature shows that not much research 

has been done on deterioration assessment, especially using vibration response data. However, 

deterioration has been evaluated in some other approaches, for instance using reliability algorithm 

(Huang and Chen, 2015). To identify deterioration, the existing vibration based assessment 

methods need to be enhanced in regard to their sensitivity. Within the scope of this paper, only 

the assessment methods which have the potential to be developed for deterioration detection will 

be reviewed below.   

Vibration-based damage detection (VBDD) methods have been investigated in the past three 

decades (Shih et al., 2009, Alvandi and Cremona, 2006). Some researchers such as Mosavi et al. 

(2012) asserted that time-series analysis modelling for ambient vibration has some advantages 

over the usual frequency domain methods. Based on these reviews, time-series analysis which 

estimates mathematical models using statistical tools to describe and analyze data such as signals 

seems to be more capable of developing deterioration features. These vibration feature data 

formats such as autoregressive time-series (Gul and Catbas, 2009, Omenzetter and Brownjohn, 

2006, Carden and Brownjohn, 2008, Gul and Catbas, 2011, Nguyen et al., 2014) have been used 

extensively among VBDD ones to detect and locate damage in structures. Statistical time-series 

methods compare two main different conditions of a considered structure called baseline and 

assessment phases. The former is defined as the reference or healthy state of the structure and the 

latter is defined as the assessment state. In each phase, statistical time-series methods use response 

signals from the structure to describe and model the data. The concept of these methods is that a 

newly estimated time-series of a damaged and/or deteriorated structure differ from the time-series 

of the baseline state of that structure (Ling et al., 2009, Lei et al., 2003). In real-world structures, 

environmental and operational (E&O) variations such as external loading and temperature may 

produce dire effects on structural health assessment and mask subtler structural changes. Damage- 

and especially deterioration-sensitive features are often sensitive to these E&O changes. 

Therefore, in order to achieve successful deterioration assessment, it is vital to develop data 

normalization techniques distinguishing the effects of deterioration from those caused by E&O 

variations. Recently, damage detection has been addressed from a statistical perspective. For 

instance, Wang and Ong (2015) defined damage indicators by using three types of statistical 

hypothesis of two-sample Kolmogorov-Smirnov test, Mann-Whitney test, and Mood test. They 

defined a function of P-values for each of the mentioned hypotheses. 

In this study, in order to remove the effect of E&O variations on the extracted features, a data 

normalization procedure including the following two steps are employed. First, data 

standardization is applied to remove E&O effects on measured acceleration response data. 

Second, a low-pass Chebyshev filter is employed to mitigate high-frequency content requiring 

complex time-series models with high model orders to well estimate the data. After vibration data 

is normalized, to detect deterioration, an autoregressive (AR) model is utilized to develop a time-

series residual-based deterioration assessment method which uses acceleration data recorded by 

SHM systems to capture changes in dynamic characteristics of structures. Many researchers, such 

as Silva et al. (2007), have used this approach to detect damage. The feature in this approach is 

defined as a function of model residuals generated by using the data corresponding to the current 

health state when fitted in the AR model created in the reference state. In order to ensure sufficient 

sensitivity of the method, a novel framework called the best model order (BMO) algorithm is 

developed to estimate the ideal model order satisfying both minimal residual and simplicity of the 

model. The time-series model orders are unknown values which are required to be estimated with 



  

 

  

care to be generalized to a wide range of data sets and to be high enough to capture the dynamic 

characteristics of the structures. These are the two key factors of optimal model orders to be 

addressed in the present study.  

In the following sections, first, the health evaluation framework based on time-series models is 

discussed. Then, the novel algorithms for structural deterioration detection are presented. Details 

of the experiment are next summarized, and deterioration detection method is verified using the 

experimental data. Finally, deterioration detection results are presented before the conclusion is 

made. 

2 DETERIORATION DETECTION ALGORITHM 

The AR model was chosen to detect deterioration assuming that the structural response is 

stationary. In order to remove the E&O effects of variations, data normalization procedure is 

designed as follows. First, data is collected from the structure using each sensor and standardized 

as follows: 
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where, ix  denotes amplitude of measured acceleration response data; x ,   and ˆ
ix  are the mean, 

standard deviation (STD) and standardized signal of ix , respectively. Second, the data are filtered 

with a twelve-order Chebyshev type II low-pass filter with a cutoff frequency of 50. This filter 

removes high-frequency content. The primary attribute of this filter is its speed. More information 

can be obtained from Smith (1997). Third, assuming the structural response as stationary, an AR 

model is fitted to the data: 
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where, p  is the model order, k ix   represents the ( )thk i  previous response, 
x

i  is the thi  AR 

coefficient of the corresponding previous response, and 
x

ke  is the residual error of the model.  

To increase the sensitivity of time-series analyses, a new framework named the BMO algorithm 

was developed to estimate an ideal model order satisfying both minimum residual and simplicity 

of the model. This method estimates the best-fit model to the data considering its complexity. 

When time-series models are well fitted to the data, the residuals against baseline become very 

small and so close to zero. The best-fit model order is the one with the least residual and suitable 

complexity. This technique enables deterioration sensitive features to be detected even with slight 

changes of vibration characteristics of the deteriorated buildings. It is worth noting that the current 

procedures are mostly suitable for detecting damage. As the changes in the response of structures 

due to deterioration are much smaller than the one caused by damage, the current techniques for 

estimating model orders which are widely used in damage detection, cannot be directly used. This 

is one of the basic concepts for obtaining sensitive features to identify anomalies and deterioration 

in buildings. If a number of time-series models from the structure in the reference (healthy) are 

available, the BMO algorithm runs according to the following steps. As this algorithm tries to 

estimate the most sensitive model order to the changes in the data, a number of data sets in the 

reference state are required to obtain a good estimation.  

Step 1: Obtain AR models using different model orders for the first data ( 1,2,...,ni  ; and n  is a 

high enough model order). 



  

 

  

Step 2: Feed another data and predict the data using the obtained AR models in step 1. 

Step 3: Calculate residuals of time-series models in step 2. 

Step 4: Calculate STD of residuals in step 3. 

( , ) ( , )( )i j i jFR e   (3) 

where, 1,2,...,j m ; and m  is the number of data sets in reference state. 

Step 5: Calculate C parameter using the following equation to obtain the changes ratio in residuals 

of different models and data sets. 
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Step 6: Repeat steps 2-5 for the number of data sets in reference state (m). C  is the n m  matrix. 

Step 7: Use the following equations and calculate β criterion. The minimum value of this 

parameter corresponds to the model order with a higher sensitivity to changes in data, including 

changes in data due to deterioration in structures. 

2  β M S   (5) 

where, S and M are STD and mean of iC , respectively. iC  is a vector of C  parameter for 

different data sets obtained by using the same model order. 

Step 8: The best model order is equal to the model order corresponding to the minimum value of 

β  criterion having fit greater than 95% in order to ensure AR models capture the dynamic 

characteristics of structures. 

In this study, a novel residual-based deterioration detection method was developed. In this 

method, statistical hypothesis of two-sample F-test for equal variances was conducted on residual 

of time-series analyses, which were estimated in the reference/healthy and assessment states of 

structures, as a deterioration detector. The P-values of the hypothesis test are used to define the 

deterioration feature. The relevant details can be found in statistics literature such as Gibbons and 

Chakraborti (2003). 

3 DESCRIPTION OF TEST STRUCTURE AND DATA 

In this study, an experimental three-story bookshelf structure was used to verify the proposed 

deterioration detection method. The experimental data was downloaded from the website of the 

Los Alamos National Laboratory (LANL), USA (Figueiredo et al., 2009). The three-story 

building structure (Figures 1 and 2) was used as accumulated-deterioration detection test bed. 

Force and acceleration time histories (time-series or sample records) for various structural states 

were collected as shown in Table 1 along with information that describes the different states. The 

structural state conditions were categorized into nine states. The first state (State#1) is the baseline 

condition. The other states (States #2-#9) are related to the structure when the mass or stiffness 

of the structure is slightly changed. Real-world structures have E&O variations, which create 

difficulties in detecting and identifying structural deterioration. Such variations often manifest 

themselves in changes of the mass or stiffness of a structure. In order to simulate these variations, 

tests were conducted with different stiffness and mass conditions (States #2-#9). For example, the 

state condition labelled “State #4” means there was an 87.5% stiffness reduction in the column 



  

 

  

located between the base and 1st floor at the intersection of plane B and D (abbreviated as 1BD, 

other abbreviations can be identified in a similar way) (Figure 1). The stiffness reduction consists 

of replacing the corresponding column by another one with lower stiffness in the direction of 

shaking. It is assumed that the structure is deteriorated in each of the considered states. In other 

words, each state shows the condition of the deteriorated structure after a specific time. For 

instance, it is supposed that in State #4, column 1BD in the first story is deteriorated (87.5% 

stiffness reduction). It should be noted that each state must be studied individually. 

 

 

 

Figure 1. Basic dimensions of the building model (dimensions are in 
cm) (Figueiredo et al., 2009) 

 

Figure 2. Three-story building 
model (Figueiredo et al., 2009) 

Table 1. Data labels of structural state conditions 

State No. Record No. Description 

State #1 1~50 Baseline condition 

State #2 51~100 Mass = 1.2 kg at the base 

State #3 101~150 Mass = 1.2 kg on the 1st floor 

State #4 151~200 87.5% stiffness reduction in column 1BD 

State #5 201~250 87.5% stiffness reduction in column 1AD and 1BD 

State #6 251~300 87.5% stiffness reduction in column 2BD 

State #7 301~350 87.5% stiffness reduction in column 2AD and 2BD 

State #8 351~400 87.5% stiffness reduction in column 3BD 

State #9 401~450 87.5% stiffness reduction in column 3AD and 3BD 

On the one hand, no research has been conducted on deterioration assessment of structures. On 

the other hand, simulating deterioration on structures is not easy and in some cases impractical. 

As a result, these data sets related to minor damage of the experimental data, which can be 

considered as accumulated deterioration, were used to validate the proposed deterioration 

detection method. A total of 450 records (nine states each of which have 50 records) of 8192 data 

points with a sampling frequency of 320 Hz is used in each level.  



  

 

  

4 ANALYSIS AND RESULTS 

The mentioned experimental data sets were utilized as input data. In this method, a data 

normalization procedure including the following two steps were employed. First, data 

standardization was applied. Second, a low-pass Chebyshev filter was employed. Then, the BMO 

algorithm was utilized to estimate the best model order. Finally, statistical hypothesis of two-

sample F-test was conducted on residual of time-series models and the P-values of the hypothesis 

test were used to define a deterioration indicator. This deterioration detection procedure was 

carried out using MATLAB. 

4.1 Model Order Selection 

The first step to assess the deterioration using the proposed methods was estimating time-series 

model orders. To obtain the best model order, 12 datasets in the reference state were used utilizing 

the novel BMO algorithm. In this case study, AR time-series model was used and the maximum 

value for model orders ( p ) is considered to be 20 as the higher model orders result larger β  

criterion.  Figure 3 shows β criterion in the BMO algorithm in which the horizontal axis indicates 

the model orders. The best model order is equal to the model order corresponding to the minimum 

value of β criterion having fit greater than 95%. For instance, in this case study, the best model 

order was 7; as for the first 6 model orders, the fit ratio was less than 95%. 

 

Figure 3. β criterion of model orders 

4.2 Deterioration detection 

In this paper, residual-based deterioration detection is carried out with the experimental data sets. 

Each state is related to a specific health state of the structure. For instance, record number 400 to 

450 is related to deterioration of two columns at the third story. In each state, the response of the 

structure is recorded at the same time in all the three stories. Figure 4 shows the results of the 

proposed method. It can be seen that deterioration was detected and there were no false alarms. 

Record number 201 to 250 is related to the State #5 which is corresponding to deterioration of 

two columns in the first story. Deterioration was detected from the recorded response in the all 

three stories. However, the higher P-values at the first story (Figure 4(a)) indicate that the first 

story is deteriorated. In other words, it should be noted that deterioration in each story can also be 

detected from other stories. Furthermore, the results showed that the more deterioration, the 

higher P-values. For instance, record 351 to 400 is related to the State #6 and record 401 to 450 

is related to State #7. State #6 indicates that one column of the second story is deteriorated, and 

State #7 points out that two columns of the second story are deteriorated. Figure 4(c) also shows 

larger P-values in State #7 than State #6. 



  

 

  

 

(a) Story 1 

 

(b) Story 2 

 

(c) Story 3 

Figure 4. Deterioration detection results 

5 CONCLUSIONS 

All structures, including newly built ones start to deteriorate at a progressive slow-pace process 

due to environmental effects, varying service loads, and ageing. Dynamic characteristics of 

buildings change due to deterioration. There is no doubt that it is highly crucial to assess the 

deterioration status of structures to maintain cost-effective maintenance and to extend their life 

expectancy. This paper presented a deterioration sensitive feature using enhanced AR model 

residuals. In this method, statistical hypothesis of two-sample F-test for equal variances was 

conducted on residual of time-series analyses and the P-values of the hypothesis test were used 

to define a deterioration indicator. In order to increase the sensitivity of the developed method, 

the BMO algorithm was developed. This novel algorithm estimates the best model order. The 

effectiveness of the proposed method was shown using an experimental case study. The results 

showed that the proposed method can clearly detect deterioration. In this procedure, the highest 

P-values in each story corresponds to the deterioration of that story. Moreover, deterioration in a 

story can be detected in adjacent stories. For instance, the deterioration of the first story can be 

detected with the second story data. It can be concluded that this procedure may be capable of 

being developed for locating deterioration in structures, but more work needs to be done to 

address the cross-level detection problem. This issue will be addressed in the future publications 

of the authors. 
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