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ABSTRACT: Ever since advanced fibres were considered for structural engineering 
applications, it has been identified that their high strain capacity made them more suitable for 
use of prestressing tendons than as reinforcing bars.  Their inherent resistance to corrosion made 
them ideal for use as external tendons, which in turn meant that they are ideal for use in repair 
and rehabilitation applications. 
 
One of the limiting factors in such applications has been the lack of knowledge about high a 
force can be applied to the fibres for a long period of time.  This directly affects the economics 
of the application, and because of uncertainty about the long-term properties can lead to very 
high factors of safety being applied.   
 
The paper presents methods that have been used to measure the stress-rupture behaviour of two 
different aramid fibres, and shows how their properties can be extrapolated. 
 
Testing is carried out using Time-Temperature Superposition, the Stepped Isothermal Method, 
and a method newly developed for this work, the Stepped Isostress Method.  From these tests 
the activation energy for the effect of temperature on creep can be determined, and its constancy 
gives confidence that the extrapolations are not being taken too far. 
 
The paper considers the implications of this work for predictions of the allowable stresses in 
prestressing tendons, stay cables for bridges, and some potential new applications for tethers in 
extreme conditions. 

1 INTRODUCTION 

 
Composite materials have been considered for use in structures for more than twenty years. 
Fibres such as aramid, carbon and glass have become increasingly popular in many structural 
applications due to their unique mechanical properties. They possess a combination of high 
strength, high stiffness and good resistance to creep and corrosion that should find use in 
external and internal prestressing, strengthening of structures through composite plates, 
composite bars as reinforcements, composites in the marine and railway industries and in 
ground engineering (Burgoyne, 1999).  
 
This paper is limited to aramid fibres; their main attraction is their good resistance to corrosion 
by water, which would allow their use as external tendons or with much reduced concrete cover 
(Burgoyne, 1992).  However, uncertainty about their ability to carry significant loads for a long 
period of time (stress-rupture) has meant that engineers have been reluctant to adopt them. 
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Prestressing tendons in concrete are most susceptible to this type of failure because they are 
tensioned against concrete immediately after the concrete has hardened, to provide the required 
compressive stresses, and the high force remains for the lifetime of the structure.  They are the 
most heavily stressed elements in any structure, with typical force in steel tendons reaching 70% 
of the average breaking load (ABL). However, creep of concrete and relaxation of the tendons 
will reduce that figure to about 60% ABL after a few months, after which it remains constant 
(Abeles and Bardhan-Roy, 1981).  Until recently, only high strength steel tendons have been 
used for prestressing concrete with ultimate tensile strengths reaching 1700 MPa. Aramids have 
a typical tensile strength about 3000 MPa. Aramids are tougher than carbon, so are easier to grip 
in a prestressing anchorage (Burgoyne, 1993); they therefore make an ideal material for use in 
prestressed concrete. 
 
The common design lifetime for bridges is 120 years. It is impossible to conduct tests for these 
durations before using new materials. Tests carried out in testing machines are impractical for 
more than a few days, while tests using dead weights have high capital costs and take up 
valuable space. Therefore, the only way to assess new materials to determine the design life is to 
apply extrapolation techniques to short term test data. 
 
Many materials exhibit stress rupture behaviour, in which the material will eventually creep to 
failure if a high load is applied continuously.  For most materials, in which viscoelasticity is a 
thermally activated process that follows the Arrhenius equation, a linear relationship between 
the load and the logarithm of the time to failure can be expected (Curve A in Fig. 1). This curve 
does not, however, represent a decline in the short term strength. If specimens were loaded with 
a force P and then subsequently tested at different ages, up to the predicted rupture time tr, the 
retained strength can be expected to follow Curve B in Fig. 1, showing that the short term 
strength is not significantly reduced (Rostasy and Schiebe, 1999). 

 

 
 

Figure 1.   Stress rupture (Curve A) and residual strength (Curve B) for aramid fibres 
 
Engineers need predictions of the stress-rupture lifetime relationship together with associated 
probabilities of failure of the material. This has been a problem for the use of aramids because 
existing test data is limited to a few months, while the contemplated load durations may be over 
a century. A commonly held view is that extrapolations should only be made for one decade on 
the log time scale. If longer extrapolations are made, much larger safety factors are frequently 
applied, which lowers the perceived strength of the material. Doubt about the extrapolation 
method can have a very real economic effect and can mean that a less suitable material is used 
simply because there is more confidence about its properties. 
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There is still an open debate about how design values should be obtained from the stress-rupture 
relationships. A commonly held approach is to obtain the characteristic value of the material at 
the prescribed design life and divide it by a partial safety factor. This factor for aramid fibres in 
some European design guides is proposed to be in the range between the value used for steel 
and that used for concrete. Because there is no significant difference between the aramids in 
production, as well as in failure modes, a material partial safety factor of 1.25 is proposed by 
FIB (2007).  However, this factor can be higher if there is doubt about the applied extrapolation 
technique. 
 
Many researchers have examined the stress-rupture behaviour of aramid fibres and have 
recommended their own stress limits. These range from 0.47 fu after 50 years (Yamaguchi et al. 
1997) to 0.66 fu after 50 years (Ando et al.,1993).  However, these creep-rupture predictions are 
based on conventional creep tests at ambient conditions and at high load levels (min 70 % 
ABL), when creep failures can be obtained in a short period of time. For lower stress levels 
extrapolation techniques have been used. The degree of extrapolation and the lack of test data 
introduce many uncertainties and therefore engineers should be very careful when using these 
figures in real structures. 
 
2. CREEP TESTS ON ARAMID FIBRES 
 
The creep data set used in this paper is part of a larger study (Giannopoulos, 2009) into the 
stress-rupture behaviour of two slightly different aramid fibres, Kevlar 49 and Technora. This 
study includes conventional creep tests at ambient conditions and accelerated tests at elevated 
temperatures and stress levels, using the Stepped Isothermal Method (Thornton et al, 1998; 
Giannopoulos and Burgoyne, 2008) and the Stepped Isostress Method (Giannopoulos and 
Burgoyne, 2009b). 
 
Kevlar 49 is an aramid fibre, made by Du Pont, composed of a single monomer unit. Technora 
is a copolymer, made by Teijin using a slightly different process. One of the monomers units is 
the same as that in Kevlar, but the other is different. Both fibres obtain their high strength from 
the natural axial alignment of the polymer chain and hydrogen bonding between adjacent 
molecules, which encourages the formation of aligned liquid crystals. 
 
Kevlar 49 and Technora yarns, available in reel forms supplied by a rope manufacturer, were 
used for all tests. The cross sectional area (A) of the yarns, after removing moisture, was found 
to be 0.17497 mm2 and 0.12260 mm2 respectively. The breaking load of Kevlar 49 and 
Technora was determined from 20 short term tensile tests and were 444.6 N for Kevlar 49 and 
349.0 for Technora.  These values are lower than might be expected, especially for the 
Technora, but are attributed to rewinding of the fibre onto spools and are typical of values found 
in real applications. 
 
Conventional creep tests (CCT) at different stress levels (77.5 - 95% ABL) were carried out in a 
special room under constant temperature (25 oC) and humidity (50% RH) on both yarns. Each 
specimen was subjected to a constant load by hanging dead-weights from the bottom clamp. 
Four tests were performed at each load level and failure of the specimens was achieved in a 
reasonable time scale (a few months). 
 
Stepped Isothermal Method (SIM) tests and Stepped Isostress Method (SSM) tests for Kevlar 49 
and Technora yarns at different load levels (50 – 80% ABL) were carried out. Eight tests using 
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SIM and four tests using SSM were conducted at each load level. Experiments were not 
conducted below 50% ABL, since Kevlar 49 and Technora show a non-linear viscoelastic 
behaviour below 40% ABL (Alwis and Burgoyne, 2008) and the superposition principle would 
not have been applicable. 
 
SIM testing involves loading a single specimen, under constant loads, with the temperature 
increased in a series of steps to accelerate the creep.  Careful choice of temperature step and step 
duration allow the test to be completed in about 24 hours. At each temperature step a creep 
curve (strain vs. time) is obtained; these are then adjusted to compensate for the different 
temperature levels and a creep master curve at a reference temperature is produced. The 
activation energy of the viscoelastic materials can be determined. 
 
In SSM testing, a similar approach is adopted but the acceleration is obtained by increasing the 
stress in steps while keeping the temperature constant. Additional stress provides energy to the 
system in an analogue of the effect of heat in SIM (Giannopoulos and Burgoyne, 2009b). 
 
All tests have been carried out until failure. A complete set of stress-rupture data from 
conventional and accelerated creep tests is thus available for Kevlar 49 (111 tests) and Technora 
yarns (98 tests). The lifetime distribution is most simply shown by plots of applied load level vs. 
logarithmic time to failure (rupture time), as shown in Figures 2 and 3. 
 
3  ANALYSIS OF DATA 
 
It is observed from Figures 2 and 3 that for load levels between 50 and 95% ABL there is a 
linear increase of the logarithmic rupture time with decreasing applied load.  This implies that 
the data follow a lognormal distribution and which can be modelled using a lognormal 
regression analysis. The data were fitted to such a distribution and tested with histograms, 
kernel density estimators, lognormal probability plots and the Lilliefors test.  All confirmed the 
validity of the lognormal distribution (Crow and Shimizu, 1988).  
 
The two fitted lognormal regression lines to the creep test data of the two materials shown in 
Figures 2 and 3 are: 

 
 log (tr) = 16.50 – 0.18 P    for Kevlar 49 (1) 

 
 log (tr) = 23.81 – 0.26 P    for Technora (2) 

 
where tr is rupture time in hours  
 P is the load expressed as a % of ABL 
 
The variation of the test data at all load levels about the two fitted regression lines is small 
(r = 0.9905 and r = 0.9828 for Kevlar 49 and Technora respectively).  
 
The objective of this analysis is to produce a curve for mean time to failure and two curves 
corresponding to 5 and 95% confidence limits. Using the creep test data, the 90% prediction 
interval of the regression line is calculated and plotted also in Figures 2 & 3. Since the 90% 
prediction interval is the area in which 90% of all data points is expected to fall, i.e. 5% above 
and 5% below, then the lower 90% prediction interval line is also the 95% characteristic curve 
for the material. For Kevlar 49, only 0.05×111 = 5.55 points are expected to fall below the 
lower 90% PI line and this is confirmed from Figure 2.  A similar observation is obtained for 
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Technora from Figure 3. The standard deviation in the logarithmic time to failure for Kevlar 49 
is 0.32 decades, while for Technora it is 0.58 decades. 
 

 
 

Figure 2.   Rupture times from CCT, SIM & SSM tests for Kevlar 49 
 

 
 

Figure 3.  Rupture times from CCT, SIM & SSM tests for Technora 
 

The characteristic value of the stress rupture lifetime will be 1.645 standard deviations below 
the mean. The 90% PI lines are drawn in Figures 2 & 3 assuming that they have the same slope 
as the mean line (i.e. the standard deviation is constant both as the load changes or the log time 
to failure changes). Figure 4 shows how the standard deviation of the short term strength (σP) 
can be compared with the standard deviation of the logarithmic rupture time (σlog(tr)), assuming a 
constant slope. 
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The constant slope and the constant standard deviation of the log rupture time would predict a 
short term strength variability of 7.9 and 7.8 N for Kevlar 49 and Technora respectively. A very 
useful conclusion that can therefore be deduced that the dispersion in the logarithmic rupture 
time values under a constant axial load can be explained from the dispersion in the static 
breaking load values. An analogous conclusion was drawn for fatigue tests by van Leeuwen & 
Siemes (1979) and Holmen (1979). 

 

 
 

Figure 4. Relation between the dispersion in the static breaking load values and rupture times 
 
The 95% characteristic curves for Kevlar 49 and Technora can be used for design purposes as 
the characteristic strength ffk for any prescribed design life. To obtain the design strength ffd a 
material partial safety factor γf should be applied. Because no extrapolation is carried out, a less 
conservative factor can be applied than the one proposed in FIB. However, to obtain such a 
value a full reliability analysis would have to be carried out (CEN, 1990). A simpler approach 
used in many Japanese Codes is adopted (JSCE, 1997), in which the design strength ffd is taken 
to be 3 standard deviations below the mean, which corresponds to a 99.73% PI line.  For a 
design life of 50 years (tr=50 years) at 25 °C, the resulting values are: 

 
 ffk(50years)  = 58.6% ABL  ffd(50years) = 56.3% ABL for Kevlar 49 (3) 

 
 ffk(50years)  = 65.8% ABL  ffd(50years) = 63.1% ABL for Technora (4) 

 
These values correspond to a partial material safety factor of 1.04 applied to the characteristic 
value.   
 
4.   EFFECT OF TEMPERATURE 
 
It should be pointed out that the fitted regression line for Kevlar 49 and Technora, shown in 
Figures 2 & 3, have been obtained for a reference temperature of 25 °C. It is possible to shift 
these lines to correspond to a different temperature T. The amount of shift log(αT) is determined 
from the Arrhenius equation  (Arridge, 1975). 

 1 1log ( )
2.30

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
T

R

E
R T T

α  (5) 
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where E is the activation energy of the reaction (Jmol-1) 
 h is the universal gas constant (= 8.314 JK-1mol-1) 
 T is the temperature (K) 
 TR is the reference temperature (K) 
 
Activation energies for Kevlar 49 and Technora were determined during the SIM testing and 
found to be 119 and 138.6 kJ·mol-1 respectively (Giannopoulos, 2009). 
 
By inserting the above equation into the stress-rupture equations (Eq. 1 & 2) new relationships 
are obtained which take account of the temperature.  For example, for Technora,  

 

 r
7248log (t ) 0.51 0.26 P

T
=+ + −  for Technora (6) 

 
Applying the above relationships, load – log (rupture times) lines are determined at 4 different 
temperatures (0, 25, 40, 60 oC) as shown in Figure 5 for Technora; a similar figure can be made 
for Kevlar. Increasing the reference temperature decreases the rupture time as expected. 

 
 

Figure 5.  Load - rupture times for Technora yarns at various reference temperatures 
 
5 CONCLUSIONS 
 
This paper has shown that it is possible to conduct accelerated tests on organic fibres which 
allow the long-term creep rupture behaviour to be established with confidence. These Stepped 
Isothermal Method and Stepped Isostress Method tests are shown to give good agreement with 
conventional creep testing but can be carried out much more rapidly, and at lower stress levels 
where conventional creep testing to failure is impractical. The effect is that it is now possible to 
predict lifetimes of these fibres, and of ropes or tendons made from them, with much more 
certainty than was hitherto possible. 
 
The methods have been applied to two aramid fibres which are similar but have slightly 
different chemical and physical structures. The results have shown that these differences are 
reflected in significant differences in their long-term properties.  It has been shown that 
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Technora has more variability than Kevlar 49, and a higher viscoelastic activation energy, 
which means that it is less likely to be affected by stress rupture at practical stress levels. 
 
It has been shown that the test data can be used to predict allowable stresses for these materials 
in applications where they are subjected to high permanent stresses, the most obvious examples 
of which are prestressing tendons and bridge stay cables. 
 
It is now possible to make use of these exciting materials in applications where lack of material 
knowledge has made engineers overly cautious about their use. 
 
An extended version of this paper is to be found elsewhere (Giannopoulos and Burgoyne, 
2009a) 
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